Regularization of the Gravity Field Inversion Process with High-Dimensional Vector Autoregressive Models

نویسندگان

چکیده

Earth’s gravitational field provides invaluable insights into the changing nature of our planet. It reflects mass change caused by geophysical processes like continental hydrology, changes in cryosphere or flux ocean. Satellite missions such as NASA/DLR operated Gravity Recovery and Climate Experiment (GRACE), its successor GRACE Follow-On (GRACE-FO) continuously monitor these temporal variations attraction. In contrast to other satellite remote sensing datasets, gravity recovery is based on inversion which requires a global, homogeneous data coverage. GRACE-FO typically reach this global coverage after about 30 days, so short-lived events floods, occur time frames from hours weeks, require additional information be properly resolved. contribution we treat stationary random process model spatio-temporal correlations form vector autoregressive (VAR) model. The measurements are combined with prior Kalman smoother framework regularize process, allows us estimate daily, snapshots. To derive prior, analyze output expected signal content evolution estimated solutions. main challenges here high dimensionality state size order 103 104, limited amount high-dimensional VAR We introduce geophysically motivated constraints estimation ensure positive-definite covariance function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A method for 2-dimensional inversion of gravity data

Applying 2D algorithms for inverting the potential field data is more useful and efficient than their 3D counterparts, whenever the geologic situation permits. This is because the computation time is less and modeling the subsurface is easier. In this paper we present a 2D inversion algorithm for interpreting gravity data by employing a set of constraints including minimum distance, smoothness,...

متن کامل

Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data

Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...

متن کامل

the effect of keeping reflective journals by language instructors on the process of reading comprehension among iranian high school students

خواندن ودرک مطلب از مهمترین مهارتها در یادگیری زبان خارجی محسوب می شود. این تحقیق تاثیر برگه های تامل برانگیز هدایت شده را در ارتقاع مهارت خواندن ودر ک مطلب در دانش اموزان دبیرستانی ایرانی بررسی می نماید. ازمجموع ?2 دانش آموز سال چهارم دبیرستان شهید رجایی شهرستان اسلامشهر¸ پس از اجرای آزمون استاندارد ((nelson 150a تعداد 39 دانش آموز که نمرات آنها یک سطح انحراف معیار بالاتر یا پایین تر ازمعدل قر...

Sparse Regularization for High Dimensional Additive Models

We study the behavior of the l1 type of regularization for high dimensional additive models. Our results suggest remarkable similarities and differences between linear regression and additive models in high dimensional settings. In particular, our analysis indicates that, unlike in linear regression, l1 regularization does not yield optimal estimation for additive models of high dimensionality....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Sciences Forum

سال: 2021

ISSN: ['2673-9984']

DOI: https://doi.org/10.3390/psf2021003007